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Abstract
We introduce the concept of regular quantum graphs and construct connected
quantum graphs with discrete symmetries. The method is based on a
decomposition of the quantum propagator in terms of permutation matrices
which control the way incoming and outgoing channels at vertex scattering
processes are connected. Symmetry properties of the quantum graph as well as
its spectral statistics depend on the particular choice of permutation matrices,
also called connectivity matrices, and can now be controlled easily. The method
may find applications in the study of quantum random walks and may also prove
to be useful in analysing universality in spectral statistics.

PACS number: 05.45.Mt

1. Introduction

The study of quantum graphs has become popular in a number of fields in quantum mechanics
ranging from molecular physics and the physics of disordered systems to quantum chaology
and quantum computation (see e.g. [Ku02]). Quantum graphs serve as computationally
inexpensive models with the ability to mimic a variety of features also present in more realistic
quantum systems. For example, the 20 year old conjecture by Bohigas, Giannoni and Schmidt
(BGS) [BGS84], stating that the spectral statistics of quantum systems whose classical limit
is chaotic follow those of random Hermitian or unitary matrices in the semiclassical limit, is
well reproduced on quantum graphs [KS97, KS99].

In this paper, we will address two fundamental, but seemingly disconnected questions
related to quantum graphs, namely, we will look at (1) ways to introduce symmetries on
connected quantum graphs and investigate (2) the degree of complexity or randomness
necessary on a quantum graph to fall within the universal regime of random matrix statistics.

The first point has hardly been addressed in the context of quantum graphs. Symmetries
on quantum graphs play an important role in studies on quantum random walks considered
recently in the context of quantum computation (see e.g. [Ke03]). Speed up of mixing
parameters of quantum random walks over classical random walks found on certain graphs is
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indeed related to interference effects due to symmetries in the quantum propagation. We will
suggest a method for imposing a large class of symmetries on certain types of graphs which
has potential applications in the design of effective quantum random walks.

It is furthermore expected that symmetries on graphs will have a profound influence on
the statistical properties of spectra of quantum graphs. The existence of discrete symmetries
and associated ‘good quantum numbers’ on connected quantum graphs is expected to lead to
deviations from random matrix results.

The second point addresses the range of validity of the BGS-conjecture. It is widely
believed that the spectra of unitary propagators on quantum graphs follow random matrix
statistics if the correlation exponents of an underlying stochastic dynamics are bound away
from zero in the limit of large graph sizes and the arcs lengths of the graph is incommensurate
[Ta01]. We will argue here that the latter condition can be considerably relaxed and that, in
the context of regular graphs, the existence or absence of random matrix statistics is related
to the commutativity properties of certain sets of connectivity matrices to be defined in detail
later. Similar results for the spectra of Laplacians of regular graphs have been reported in
[JMRR99]. A related discussion of spectra of adjacency matrices of Cayley graphs of certain
groups can be found in [Te03].

We start by briefly reviewing the notion of a quantum graph. A quantum graph is given
by an underlying graph G and a set of local scattering matrices at the vertices as well as a set
of arc lengths. A (finite) directed graph or digraph consists of a finite set of vertices and a
set of ordered pairs of vertices called arcs. We denote by V G and EG the set of vertices and
the set of arcs of the digraph G, respectively. Given an ordering of the vertices, the adjacency
matrix of a digraph G on n vertices, denoted by AG, is the (n × n)(0, 1)-matrix where the ijth
element is defined by

AG
ij :=

{
1 if (i, j) ∈ EG

0 otherwise.

An undirected graph (for short, graph) is a digraph whose adjacency matrix is symmetric.
The line digraph of a digraph G, denoted by LG, is defined as follows (see e.g. [BG01]):
V LG = EG and, given (h, i), (j, k) ∈ EG, the ordered pair ((h, i), (j, k)) ∈ ELG if and only
if i = j .

A quantum graph associated with a digraph G on n vertices may then be defined in
terms of a set of unitary vertex scattering matrices σ (j) on vertices j = 1, . . . , n and a set of
arc-lengths L(i,j) defined for every arc (i, j) ∈ EG. Waves propagate freely along the directed
arcs; transitions between incoming and outgoing waves at a given vertex j are described by
the scattering matrix σ (j). The two sets specify a unitary propagator of dimension nE = |EG|
defining transitions between arcs (i, j), (i ′, j ′) ∈ EG which has the form [KS97]

SG = DV with D(i,j)(i ′,j ′) = δi,i ′δj,j ′ eikL(i,j)

where k is the wave number and

V(i,j)(i ′,j ′) = ALG
(i,j)(i ′,j ′)σ

(j)

ij ′ with ALG
(i,j)(i ′,j ′) = δj,i ′ .

The local scattering matrices σ (i) depend on the boundary conditions and local potentials
at the vertex i which we do not want to specify here any further. For our purpose, we may
regard the σ (i) as arbitrary unitaries. Let d−

i and d+
i be the number of incoming and outgoing

arcs of a vertex i, respectively. A sufficient and necessary condition for a digraph G to be
quantizable in the way given above is then, that for every vertex i ∈ V G, d+

i = d−
i = di =

dim σ (i) [PTZ03, S03]. This means in particular that if G is an undirected graph then it is
quantizable.
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The ‘classical’ dynamics corresponding to a quantum graph defined by a unitary
propagator SG is given by a stochastic process with transition matrix T

Tij = ∣∣SG
ij

∣∣2 = |Vij |2.
Note that both the quantum mechanics as well as the associated stochastic dynamics relate to
transitions between arcs and are thus defined on the line digraph of G.

The paper is organized as follows. In section 2, we will introduce the notion of regular
quantum graphs and discuss a factorization of the propagator in terms of connectivity matrices
for a special class of such graphs. In section 3, we relate the existence or absence of symmetries
on a connected regular quantum graph to properties of the connectivity matrices. We discuss
some specific examples for completely connected graphs including statistical properties of the
spectra in section 4. In section 5, we show numerically that by inscribing a single (2 × 2)

unitary matrix into a large regular quantum graph one still obtains random matrix statistics
despite huge degeneracy in the set of arc lengths and scattering matrices for a generic choice
of connectivity matrices.

2. Regular quantum graphs

We will implement symmetries on quantum graphs for which the wave dynamics at a given
vertex of the digraph is ‘locally indistinguishable’ from that of any other vertex of the graph.
We will restrict ourselves to wave dynamics on d-regular digraphs. Recall that a digraph G is
said to be d-regular if, for every vertex i ∈ G, d+

i = d−
i = d and thus |EG| = nd. Extending

the concept of local indistinguishableness to quantum graphs, we will consider quantum graphs
on d-regular digraphs with local (d ×d) scattering matrices σ (i) and set of outgoing arc lengths
L(i,j) being identical at every vertex i up to permutations of the incoming or outgoing channels.
That is, there are (d × d) unitary matrices σ and D(k) with Dij (k) = δi,j exp(ikLi) and local
permutation matrices q(i), p(i), such that

σ (i) = p(i)σq(i) and D(i)(k) = p(i)D(k)(p(i))−1.

Combining the local matrices σ and D(k) to a single matrix C(k) = D(k)σ , we obtain

C(i)(k) = D(i)(k)σ (i) = p(i)Cq(i). (1)

We call a quantum graph with these properties a regular quantum graph. The matrix C is
called the coin in the context of quantum random walks on graphs [Ke03].

We denote by Jn the (n×n) matrix with all elements being equal to 1 and In is the identity
matrix. The following observation will be useful in what follows (see also [S03a]):

Proposition 1. Let AG be the adjacency matrix of a d-regular digraph G. The adjacency
matrix of LG has up to reordering the arcs the form

ALG =
(

d⊕
i=1

ρi

)
· (Jd ⊗ In) (2)

where the matrices ρi of dimension n have entries 0 or 1 only and ρiej = ek∀i, j and some
k ∈ {1, . . . , n}; here ej is the j th vector in the standard basis. In addition, we have

d∑
i=1

ρi = AG. (3)
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Figure 1. A 3-regular graph of size 4 together with a possible connectivity matrix relating an
outgoing arc to every vertex.

Remark. A given matrix ρi assigns to every vertex j a specific arc (j, ρi(j)) with
ρi(j) = ρiej , see figure 1. Note that, for d > 1, the choice of matrices ρi is in general
not unique and that the ρi do not need to be invertible. Different sets of ρi fulfilling the
conditions in the proposition give rise to adjacency matrices of the line digraph which are
equivalent up to permutations in the ordering of the arcs.

Proof. Condition equation (3) ensures that (j, ρi(j)) ∈ EG for every i and j ; writing
equation (2), we obtain

d⊕
i=1

ρi =




ρ1 0 · · · 0
0 ρ2 · · · 0
...

...
. . .

...

0 0 · · · ρd


 and thus

(
d⊕

i=1

ρi

)
· (Jd ⊗ In) =




ρ1 ρ1 · · · ρ1

ρ2 ρ2 · · · ρ2

...
...

. . .
...

ρd ρd · · · ρd


 .

The choice of matrices ρi fixes the ordering of the arcs according to

(1, ρ1(1)), (2, ρ1(2)), . . . , (n, ρ1(n)), (1, ρ2(1)), . . . , (n, ρ2(n)), . . . ,

(1, ρd(1)), . . . , (n, ρd(n)). (4)

The non-zero matrix elements of ALG as defined in (2) thus refer to the allowed transitions

(i, ρj (i)) → (ρj (i), ρk(ρj (i)))

with j, k = 1, . . . d and i = 1, . . . n in the line digraph of G. �

We pointed out in the introduction that the wave propagation on a quantum graph actually
lives on the line digraph of the underlying digraph. Generalizing (2) to describe unitary
propagation on digraphs, we write

SG =
(

d⊕
i=1

ρi

)
· (C ⊗ In) =




C11ρ1 C12ρ1 · · · C1dρ1

C21ρ2 C22ρ2 · · · C2dρ2

...
...

. . .
...

Cd1ρd Cd2ρd · · · Cddρd


 (5)

with C being the unitary (d × d) coin and the matrices ρi fulfil the condition (3). We have to
add the additional constraints here that the ρi are invertible, that is, that they are permutation
matrices. The condition is necessary to ensure that SG is unitary. We will refer to the
permutations ρi as the connectivity matrices in what follows, see (1). SG satisfies all the
properties of a regular quantum graph as defined above. The matrix C is in particular the coin
from which the local scattering matrices C(j) at vertices j can be deduced. One obtains

Ckl = C
(j)

ρ−1
k (j)ρl (j)

.
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The connectivity matrices ρk and ρl thus specify the pair of arcs related through the transition
Ckl at a given vertex j .

Remark. In contrast to (2) where different decomposition of AG of the form (3) lead to
equivalent adjacency matrices (up to reordering the arcs), this is no longer the case for (5).
Different sets of connectivity matrices lead here to different regular quantum graphs which
may have very different spectral properties as will be discussed in the next section.

Remark. Note that not all regular quantum graphs can be written in the form (5). Any
pair of permutation matrices P and Q leaving the adjacency matrix of a line graph ALG of a
d-regular graph G invariant, that is QALGP = ALG, transform an associate propagator of a
regular quantum graph, SG, into a propagator of a d-regular, albeit different, quantum graph
S̃G = PSGQ. If SG is of the form (5), one easily finds permutations P and Q such that S̃G is
not of this form.

So far we have considered general regular digraphs. In the special case where the
underlying graph is undirected, it is natural to consider associated time-reversal symmetric
regular quantum graphs; that is, regular quantum graphs for which for every (wave) path
there exists an equivalent time-reversed path undergoing the same transitions. A time-reversal
symmetric unitary propagator of the form (5) for an undirected regular graph can be constructed
by choosing symmetric coin and connectivity matrices, that is,

C = Cᵀ and ρi = ρ
ᵀ
i for every i = 1, . . . , d.

Note that the symmetry conditions for the connectivity matrices severely limit the choice of
possible graphs and decompositions.

3. Symmetries on regular quantum graphs and spectral decompositions

We first note that if a regular quantum graph can be written in the form (5) and there exists an
invertible (n × n) matrix π such that

[π, ρi] = 0 for every i = 1, . . . d (6)

then

[P, SG] = 0 with P = (Id ⊗ π) (7)

independent of the choice of the coin C. The result follows immediately from

[(C ⊗ In), P ] = 0.

It is obvious that the condition (6) implies [π,AG] = 0.
The above property enables us to study certain symmetries of quantum graphs in terms

of the symmetries of the connectivity matrices only. Given a d-regular digraph G, we can in
general find many sets of connectivity matrices which sum up to AG and which may have
very different symmetry properties. Or if one is interested in quantum graphs with specific
symmetries one may start from a set of connectivity matrices ρi in order to construct quantum
graphs with desired properties. We consider various scenarios here and give some specific
examples in the next section.

3.1. The Abelian case: [ρi, ρj ] = 0

In the special case when all connectivity matrices commute, every ρi acts as a symmetry π .
The spectrum of SG can then be decomposed into n sub-spectra of dimension d.
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Proposition 2. Let SG be of the form

SG =
(

d⊕
i=1

ρi

)
· (C ⊗ In)

where the (n × n) connectivity matrices ρi fulfil [ρi, ρj ] = 0, AG = ∑d
i=1 ρi is the adjacency

matrix of a d-regular digraph and C is a (d × d) unitary matrix. Let u be the (n × n) unitary
matrix simultaneously diagonalizing the ρi , that is,

u†ρiu =
n⊕

m=1

eiϕi
m i = 1, . . . , d

and ϕi
m is the mth eigenphase of the connectivity matrix ρi where the order is determined by

the transformation u. The spectrum of SG, sp(SG), is then

sp(SG) = sp
(
SG

1

) � sp
(
SG

2

) � · · · � sp
(
SG

n

)
where

SG
m =

(
d⊕

i=1

eiϕi
m

)
· C. (8)

Proof. Define U = (Id ⊗ u) and note that

[U, (C ⊗ In)] = 0.

Thus

U †SGU =
(

d⊕
i=1

n⊕
m=1

eiϕi
m

)
· (C ⊗ In).

There exist permutation matrices P such that P T (C ⊗ In)P = (In ⊗ C) and thus

P T U †SGUP =
(

n⊕
i=1

SG
m

)

is indeed block diagonal of the form stated in the proposition. �

Remark. Note that the decomposition is independent of the coin C.

It can be shown [ST04] that a set of commuting connectivity matrices of a connected
graph G always form a subset of the regular (permutation) representation of an Abelian group
and the underlying symmetry of the corresponding quantum graph is given by that group. (The
commutativity of the ρi does in fact imply that G is a Cayley digraph of an Abelian group;
it must therefore have the form of a discretized torus). The sub-spectra obtained from SG

m

may then be characterized in terms of the eigenbasis of the generators of the Abelian group
represented by the connectivity matrices. Let a1, . . . , ar be the generators of such an Abelian
group,

with a
ni

i = id and
r∏

i=1

ni = n where ni � 2.

The eigenbasis of the connectivity matrices may then be written in Dirac notation as |m1 . . . mr〉
with mi = 1, . . . , ni and the sub-spectra obtained from (8) are characterized by a set of r
‘quantum numbers’ SG

m1,...,mr
. Such a regular quantum graph is thus a discretized version of

quantum systems whose underlying classical dynamics has r-integrals of motion in involution.
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Some additional degrees of freedom are represented by the coin C which may or may not be
related to classical chaotic dynamics depending on the properties of C and the group.

3.2. Partial symmetries: [π, ρi] = 0, but [ρi, ρj ] �= 0

Next we consider the case that a symmetry π exists with [π, ρi] = 0 for all i ∈ V G, but
[ρi, ρj ] �= 0 for some i, j = 1, . . . , d. This implies that π has degenerate eigenvalues. π

could for example represent a C2 symmetry of the graph, that is, π2 = In with eigenvalues
±1 only.

Let us assume that π has r < n distinct eigenvalues λi, i = 1, . . . , r , each with multiplicity
ni with

r∑
i=1

ni = n.

Let u be a unitary matrix diagonalizing π in the form

u†πu =
r⊕

i=1

λiIni

u then brings ρi into block-diagonal form, that is,

u†ρiu =
r⊕

j=1

ρ̃
(j)

i

with dim ρ̃i
(j) = nj . The spectrum of SG is now decomposed in the following way:

Proposition 3. Let SG be of the form (5) and the matrices ρi , π have the properties as
described above; sp(SG) is then of the form

sp(SG) = sp
(
SG

1

) � sp
(
SG

2

) � · · · � sp
(
SG

r

)
with

SG
m =

(
d⊕

i=1

ρ̃
(m)
i

)
· (

C ⊗ Inm

)
where m = 1, . . . , r. (9)

The proof is similar to the one of proposition 2.
The decomposition is again independent of the coin C, but the sub-spectra are now of

dimension

dim SG
m = nmd.

There is a trivial symmetry independent of the particular choice of the ρi related to the fact that
every permutation matrix has an eigenvalue 1 with corresponding eigenvector (1, 1, . . . , 1)T .
The symmetry π in question has the form

πij = 2

n
− δi,j

having two distinct eigenvalues ±1 and the eigenvalue −1 has geometric multiplicity n − 1.
As a consequence any SG can be block diagonalized containing C as a (d × d) block, and thus

sp(C) ⊂ sp(SG).
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4. Some examples for AG = Jn

When constructing particular examples, it is useful to start with the completely symmetric
graph, namely that of a fully connected graph. This graph, also called the complete graph,
has adjacency matrix Jn. As [P, Jn] = 0 for every permutation matrix P of size n, we may
indeed construct regular quantum graphs of degree d = n with whatever finite symmetry we
want. In addition, we can make use of the fact that if � is a finite group of order n and the
(n × n) permutation matrices ρi form a regular representation of � then

n∑
i=1

ρi = Jn. (10)

We can thus implement the group properties of any finite group on a regular quantum graph
by choosing the regular representations of that group as the connectivity matrices. In what
follows we will consider various decompositions of Jn and see how they affect statistical
properties of the quantum graph spectra.

4.1. The cyclic group Zn

The simplest Abelian group is the cyclic group Zn. The regular representations ρi are of the
form

(ρj )kl = δk,(l+j)mod n with eigenvalues χj
m = e2π i jm

n where j,m = 1, . . . , n.

Here, ρj = (ρ1)
j and ρn = In. In order to construct regular quantum graphs with circular

symmetry independent of the coin C we use as connectivity matrices the regular representation
of Zn. The spectrum of the quantum graph can then be decomposed into the sub-spectra given
by

SG
m =


 n⊕

j=1

e2π i jm

n


 · C.

The eigenvalues are characterized in terms of two quantum numbers, an angular momentum’
quantum number m and a second quantum number r, say, counting the eigenvalues in each m
manifold. If the spectra for different m are uncorrelated, one expects Poisson statistics of the
total spectrum in the limit n → ∞.

Figure 2(a) shows spectral properties of SG with n = 24, that is, dim SG = 576. We plot
here the nearest-neighbour spacing (NNS) distribution P(s) and the form factor K(τ), the
Fourier transform of the two-point correlation function. The coin is of the form (1) where the
local scattering matrix σ is taken randomly from a CUE-ensemble and the arc lengths entering
the diagonal matrix D are chosen independently and identically distributed in [0, 1]. The
average is, for a fixed choice of coin and arc lengths, taken by averaging over the wavelength
k [Ta01].3 The numerical results shown in figure 2(a) indeed suggest Poisson-statistics apart
from deviations in the form factor on scales τ � 1/n due to the ‘chaotic nature’ of the coin.

3 Alternatively, one can consider the spectrum being the ‘resonances’ of the quantum graph at wave numbers given
by

det(1 − SG(k)) = 0.

Both approaches are equivalent under very general conditions [BK99].
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Figure 2. Form factor K(τ) and nearest-neighbour spacing distribution P(s) for (a) ρi are the
regular representation of the cyclic group Z24; (b) ρi represent the symmetric group S4; (c) a
generic set ρi without non-trivial symmetries. The dashed curve in (b) labelled ‘red. Poisson’
corresponds to a distribution of degenerate levels being Poisson distributed otherwise.

4.2. The non-Abelian case: the symmetric group S4

Next, we consider a specific example of a non-Abelian group, namely the symmetric group S4

with n = 24 elements; we will discuss spectral properties of general groups elsewhere [ST04].
The regular representation of S4 can be decomposed in terms of its irreducible representations
(for short irreps); each ρi contains each d-dimensional irrep exactly d times. The group S4

has two one-dimensional, one two-dimensional and two three-dimensional irreps, such that

2 × 11 + 1 × 22 + 2 × 33 = 24.

Denote the irreps of the group element i ∈ S4 as

ρ̃
(1,1)
i , ρ̃

(1,2)
i , ρ̃

2,1
i , ρ̃

(3,1)
i , ρ̃

(3,2)
i

with dim ρ̃
(d,l)
i = d and the index l counting different irreps of the same dimension; there
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exists then a transformation u such that

u†ρiu =
(

2⊕
l=1

ρ̃
(1,l)
i

)
⊕ (

I2 ⊗ ρ̃
(2,1)
i

) ⊕
(

2⊕
l=1

(
I3 ⊗ ρ̃

(3,l)
i

))
.

The connectivity matrices ρi are thus of the form as discussed in section 3.2. Note that the
sub-matrices SG

d,l related to d-dimensional irreps now occur d times in the decomposition. We
thus have five independent sub-spectra, two of dimension 24, one of dimension 48 and two
of dimension 72 of which the latter are of multiplicity two and three, respectively. The huge
degeneracy in the spectra can clearly be seen in the spectral statistics; it is manifest in the peak
at s = 0 in P(s) (see figure 2(b) and leads to

K(τ) = (2 × 33 + 1 × 23 + 2 × 13) = 8/3 for τ > 3/24.

The spectra appear to be uncorrelated otherwise; note however, that the spectrum for each sub-
matrix SG

d,l alone is correlated following CUE statistics, which manifests itself in the deviations
from purely Poisson behaviour in P(s) (cf dashed curve) as well as in the behaviour of the
form factor for τ � 3/24 which is dominated by the sub-spectra of the three-dimensional
irreps.

4.3. The generic case: no symmetries

The overwhelming number of decompositions of the form (10) will, of course, have no common
symmetry apart from the trivial symmetry discussed in section 3.2. Even though no further
analytical results can be given in this case, a numerical study may reveal interesting insights
into the range of validity of the RMT-regime. Figure 2(c) shows the level statistics of a regular
quantum graph obtained from a fully connected graph for a generic choice of connectivity
matrices. One indeed finds good agreement with random matrix theory for the CUE-ensemble.
Deviations in the form factor for small τ can be attributed to the fact that the spectrum of C is
contained in the full spectrum. After removing this separable part of the spectrum as done for
the NNS in figure 2(c) there is good agreement with random matrix results. It is worth keeping
in mind that this is a highly non-random matrix; we are dealing here with the spectrum of
the (n2 × n2) unitary matrix SG which has only n3 non-zero elements of which only n2 are
independent. In particular, the arc lengths in the graph are not incommensurate, the n2 arcs in
the graph share only n different lengths among them. Still, universality is obtained. The origin
of the complexity in this type of quantum graphs is here clearly not due to the ‘randomness’
in the choice of the matrix elements but due to the lack of a common symmetry in the set of
connectivity matrices.

5. Regular de Bruijn quantum graphs

The results in the last section suggest that spectral statistics of regular quantum graphs can to
a large extent be controlled by properties of the permutation matrices ρi independent of the
coin C. It is thus natural to ask whether we can reduce the dimension of the coin to its smallest
possible value, namely dim C = 2, by considering large 2-regular quantum graphs and still
obtain random matrix correlations.

We can only expect random matrix statistics on a regular quantum graph if the
corresponding quantum graph with randomly chosen arc-lengths falls into the random matrix
category. We therefore need to consider 2-regular graphs leading to fast (classical) mixing
and not for example diffusive networks such as ring graphs [SS00] exhibiting 1D-Anderson
localization. The d-regular digraphs with the fastest mixing rates are the so-called d-ary
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Figure 3. Form factor K(τ) and nearest-neighbour spacing distribution P(s) for binary de Bruijn
graph of order k = 9 with dim SB(2,9) = 1024.

de Bruijn graphs of order k, B(d, k), being the (k − 1)th line graph generation of a complete
graph of size d. That is

B(d, k) = Lk−1G with AG = Jd

and LkG is iteratively defined as LkG = L(Lk−1G) [B46, FYA84]. De Bruijn graphs have size
dk and are equipped with a complete symbolic dynamics of order d. They play an important
role in coding theory and parallel algorithms [SR91, SP89]. Numerical evidence suggests that
quantum graphs based on de Bruijn digraphs with incommensurate arc lengths follow random
matrix statistics in the limit of large graph sizes even for d = 2 [Ta00, Ta01].

In figure 3, we show results for a regular quantum graph based on a binary de Bruijn
graph B(2, k) with k = 9 and quantum propagator

SB(2,k) = (ρ1 ⊕ ρ2) · (C ⊗ I2k )

where ρ1, ρ2 are permutation matrices with ρ1 +ρ2 = AB(2,k) and C is a (2×2) unitary matrix.
The statistics in figure 3 are obtained by averaging over the space of (2 × 2) unitaries with
respect to the Haar measure. The connectivity matrices of dimension 2k have been chosen
randomly. To avoid accidental symmetries, different sets of connectivity matrices have been
produced and the statistics of the corresponding ensemble averages combined. The spectral
statistics of these regular quantum graphs agrees again very well with CUE statistics. Recall
that the unitary matrix SB(2,9) of size 210 = 1024 has 211 non-zero matrix elements which
do, however, take only four different (complex) values! We have thus constructed extremely
non-random matrices which still show universal random matrix statistics and have thereby
shown that the BGS-conjecture is valid far beyond regimes previously thought to be included
in the conjecture. Similar numerical results were also found for the spectra of the Laplacian
of regular graphs [JMRR99]. A Laplacian on a d-regular undirected, loop-less graph G is

 = dIn−AG and is thus a symmetric matrix whose non-zero matrix elements take the values 1
or d only. When averaging over sets of d-regular graphs agreement with GOE statistics was
found. This underlines once again that the origin of universality in spectral statistics lies not
in the randomness of the matrix elements.

6. Conclusions

We introduce a decomposition of certain regular quantum graphs which separates the quantum
propagator on a graph into a topological part containing the connectivity matrices and a part
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containing the quantum scattering information at the vertices. This allows one to implement
global symmetries on the graph by choosing the connectivity matrices according to desired
symmetry properties. We demonstrate that the complexity in the quantum spectrum (which
may be seen to take on its maximal value when the statistics coincides with RMT) can here
be linked to the amount of complexity contained in the set of permutation matrices building
up the quantum graph. We present examples, where for a given graph and a fixed coin matrix,
we were able to construct anything from Poisson to RMT-statistics just by changing the set
of connectivity matrices. By doing so, we leave the local properties of the graph invariant,
but change the way in which incoming and outgoing channels between vertices are connected
and thus the global structure of the wave dynamics. We take this concept to its extreme
by demonstrating numerically that unitary matrices representing 2-regular quantum graphs
whose non-zero matrix elements take only four different values still follow CUE statistics for
de Bruijn graphs.

We believe that our results open up new perspectives in understanding universality in
spectral statistics. It transforms the question from a continuous to an essentially discrete
problem focusing on the way local scattering processes are connected and condensing the
parameter space to an absolute minimum (namely four dimensional).
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